Dynamics of the Rational Difference Equation

نویسندگان

  • M. A. El-Moneam
  • E. M. E. Zayed
چکیده

In this article, we study the periodicity, the boundedness and the global stability of the positive solutions of the following nonlinear difference equation xn+1 = Axn +Bxn−k +Cxn−l +Dxn−σ + bxn−k +hxn−l dxn−k + exn−l , n = 0,1,2, ....., where the coefficients A,B,C,D,b,d,e,h ∈ (0,∞), while k, l and σ are positive integers. The initial conditions x−σ ,...,x−l ,...,x−k, ...,x−1,x0 are arbitrary positive real numbers such that k < l < σ . We will prove that the equilibrium points of this equation are locally asymptotically stable, global attractor and hence they are global stability. This equation will have ( or have not ) prime period two solution under suitable conditions on these coefficients. The solutions of this equation will be proved to be bounded. Some numerical examples will be given to illustrate our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$

The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...

متن کامل

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

Dynamics of a Nonlinear Difference Equation 2

In this paper the dynamics for a third-order rational difference equation is considered. The rule for the trajectory structure of solutions of this equation is clearly described out. The successive lengths of positive and negative semicycles of nontrivial solutions of this equation are found to occur periodically with prime period 7. And the rule is 3, 2−, 1, 1− in a period. By utilizing the ru...

متن کامل

Global Dynamics for a Higher Order Rational Difference Equation

In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014